TRIFLEX®, a well-known name in piping stress analysis since 1971, provides piping stress analysts with an easy-to-use program to quickly and accurately analyze piping systems for the effects of pressure, temperature, weight, and other static loads as well as a variety of dynamic loading conditions.

TRIFLEX® has been successfully used to analyze piping systems from the simplest to the extremely complex and the accuracy of the results has been documented.

TRIFLEX® is truly unique. When users compare TRIFLEX® to other programs that they have used, they say that it eliminates the need to use a calculator for data entry. TRIFLEX® accepts data in the format that users want to enter it and provides extensive user flexibility.

TRIFLEX® has been a leader in the implementation of innovation for years. TRIFLEX® produces complete results that document the behavior of a piping system and associated structural members in accordance with industry accepted codes and standards throughout the world.

Designing a new piping system
You can easily download GPS data or piping data from a 3-D CAD system directly into TRIFLEX® or you can quickly and efficiently build a piping model using the logical data dialogs provided by TRIFLEX®.

Analyzing or revamping an existing piping system
You can easily load a previously entered TRIFLEX® piping model and modify the piping model to reflect different design conditions or a different piping configuration.

With TRIFLEX®, you can produce more piping analyses in a shorter time period with fewer errors and less frustration.

TRIFLEX® Windows
Find out why TRIFLEX® users are so loyal

Since its introduction in 1971, TRIFLEX® has been extensively utilized by numerous companies and individual consultants around the world and has been the piping stress analysis program of choice for discriminating piping stress engineers throughout the world. There are numerous reasons for the success of TRIFLEX® including:

Ease of Use
TRIFLEX® is comprised of logically organized dialogs with linked realistic 3-D graphics. Detailed user documentation as well as numerous “How To” PowerPoint presentations guide users through the use of TRIFLEX® when more than intuition is required. Extensive data checking is built into TRIFLEX® and user friendly data verification tools are provided to enable users to quickly perform additional checks. Users say that TRIFLEX® eliminates the need for a calculator and a scratch pad that other piping stress analysis programs require.

Proven Track Record
Since its introduction in 1971 and through all the various stages of development and through the transitions from the mainframe computers to minicomputers to the Microsoft DOS environment and finally the Microsoft Windows environment, TRIFLEX® has proven to be extremely stable and reliable.

Quality Assurance
PipingSolutions, Inc., as a corporation, is committed to developing state of the art, high quality engineering software. PipingSolutions’ performs extensive tests on all of our software, including TRIFLEX®. Stringent quality assurance (QA) standards are adhered to on each and every release of our software.

Widely Used & Accepted
TRIFLEX® is well-known and accepted as a reliable piping stress analysis tool throughout the energy, chemical, pulp and paper, utility, shipbuilding and pharmaceutical industries as well as in the engineering firms that serve them.

Innovative Leadership
TRIFLEX® has frequently led the competition in the development of new and innovative technical capabilities and user conveniences. For instance, the 3-D graphics that TRIFLEX® offers has been the state of the art that all others try to match.

Continuing Development, Enhancement & Integration
Over the past thirty-nine (39) years, PipingSolutions has continually invested in improving our software. We have committed large amounts of resources to insure that TRIFLEX® operates in the proper computer environment and has the technical capabilities and features that our TRIFLEX® users require. As technology and computer environments have changed, PipingSolutions has responded. As other software has been developed by other vendors for related functions, PipingSolutions has sought to develop interfaces with these software products. We are committed to integrating our software with related programs that will benefit our users. PipingSolutions invites users to provide recommenda-
tions and input in the further growth of TRIFLEX®. We listen to our users and we respond with new features and capabilities.

Technical Support

Experienced piping stress analysts and developers of TRIFLEX® field users’ inquiries and offer answers, options and recommendations in a timely and responsible manner. Since PipingSolutions also offers its services performing piping stress analysis, our piping stress analysts find themselves being in the same situation as our TRIFLEX® users. Being on both sides of the technical support issue gives our staff a unique appreciation of the needs of our users.

Established Company

In 1998, PipingSolutions was established from the Engineering Software and Consulting Division of AAA Technology. In 1971, AAA Technology was established with an Engineering Software and Consulting Division and a Manufacturing Division. Prior to 1998, TRIFLEX® and all the related technical activities were operated as the Engineering Software and Consulting Division of AAA Technology. This means that the entity that developed and is continuing to develop TRIFLEX® is thirty-nine (39) years old. Many of the members of our staff have been with us back into the days of AAA Technology which means that your contacts at PipingSolutions are consistent and constant. The founder of the company is still with the company. That is stability!

Data Entry & Modeling Capabilities

TRIFLEX® data entry capabilities have defined the standard for the way discriminating piping stress engineers approach piping system stress analysis. The intuitive manner in which TRIFLEX® is organized enables users to construct piping models faster and with fewer errors than with competing programs. With the tremendous flexibility provided by TRIFLEX®, the complexity of data entry is dramatically reduced as is the time required to construct each piping model. TRIFLEX® offers logically organized data entry dialogs that speed data entry and don’t required digging through layers of hidden dialogs to find where data is to be entered. Given all the required data, piping models can be constructed in a short period of time. Extensive error checking is performed by TRIFLEX® as the piping model is constructed. If the model is not logical, TRIFLEX® will not pass it. To enable the user to further verify the integrity and validity of the data entered, TRIFLEX® provides numerous graphical data checking tools that are very easy to use.

Data entry and modeling capabilities of TRIFLEX® include:

Interactive Graphics

With TRIFLEX®, you have the ability to walk through and around your piping model at will. You can pan and rotate your piping model at will. You can zoom in or out at will as well and you can ask TRIFLEX® to hold any desired point in the piping model at the center of the screen. Want to look at two piping models in parallel windows and make comparisons? No problem for TRIFLEX®. TRIFLEX® provides users the ability to view piping in a single line representation or as a wire frame or as a rendered cylindrical shape. TRIFLEX® also provides the user with the ability to selectively cause segments of piping to be shown as translucent therefore enabling jacketed piping to be logically displayed.

User Documentation, On-Line Help & PowerPoint How To’s

With TRIFLEX®, you have extensive, detailed user documentation as part of the TRIFLEX® installation. It is all provided in PDF format and you can display chapter by chapter at will. On-line help is also provided to give field by field guidance for data entry. Further, PowerPoint Presentations are provided on PipingSolutions’ website and are updated frequently in order to provide you the latest guidance to the use of TRIFLEX® to model virtually all possible piping situations.

Extensive Selection of Boundary Conditions Available

TRIFLEX® provides an extensive range of boundary conditions for the user to select from as follows:

- **Anchor types offered:**
 - Anchors with displacements
 - Anchors without displacements
 - Anchors with stiffnesses defined along the X, Y and/or Z axes
 - Anchors with stiffnesses defined along a skewed axis system

- **Restraint types offered:**
 - Single or double acting translational and rotational
 - Translational with bi-linear stiffness
 - Guides and limit stops
 - Gaps with stiffnesses at stops and support friction
 - Bottomed-out/topped-out spring supports
 - Snubbers
 - Release Elements for defining connectivity between two nodes in a piping system

Extensive Piping Databases

TRIFLEX® provides comprehensive databases for pipe diameters and wall thicknesses, flanges, valves, pressure relief valves, insulation, FRP/GRP material properties, modulus of elasticity, expansion coefficient and material properties with temperature dependent allowable stresses. The valve & flange databases include built-in lengths & weights which can be selectively overtyped by the user. TRIFLEX® also provides users the ability to add to the TRIFLEX® database or to build their own database.
Structural Steel Database—Absolutely the Most Seamless Structural / Piping Integration in the Market—No Question!

TRIFLEX® provides a structural steel database derived from the complete AISC tables. It allows users to enter AISC standard as well as custom shapes, orient the members in three dimensions, and connect the structure to the remainder of the piping system with ease. TRIFLEX® accurately simulates structural members, calculates deflections, forces and moments, multiple point stresses, and member capacity per the LRFD method.

Inheritance
TRIFLEX® enables users to enter data only once; the entered properties will be inherited on each subsequent component until the User enters new properties. This feature makes entering the data for a typical piping system with or without structural steel restraint members very straightforward and quick while reducing data entry errors.

Rippling
TRIFLEX® enables users to make revisions to existing piping models very quickly and easily. Edits can be easily made to one component at a time or to a sequence of components. Edits can be easily made to all or to selected data with a single edit. Selected data can be edited easily on all components that have similar properties, for instance, temperature or pressure or all components with a specific thickness of insulation or type of insulation and there are many more easy to use selection/edit options available in TRIFLEX®.

Block Operations for Editing Data
TRIFLEX® provides users with block editing features such as Copy, Flip, Paste, Delete, Undo, Redo, Renumber and Merge. Users can perform these operations in spread sheet mode or graphically. The graphical block operations enable the user to immediately see the operation without requiring other steps to see the results of the operation. Most other programs don’t offer this tremendous graphical feature.

FRP/GRP (Fiberglass) Pipe Capabilities
TRIFLEX® provides users with the criteria of two piping codes specifically for fiberglass reinforced plastic pipe plus vendors’ data to assist users in modeling FRP/GRP pipe as well as guidelines for evaluating the results.

Expansion Joint Modeling
TRIFLEX® enables users to easily model single expansion joints as well as expansion joint assemblies with parameters taken directly from expansion joint manufacturers’ catalogs. TRIFLEX® provides users the ability to accurately model single, tandem and pressure balanced expansion joints.

Modeling Jacketed Piping Systems
TRIFLEX® enables users to easily and accurately model jacketed piping systems and to obtain deflections, forces, moments and stresses in the inner and outer pipes. TRIFLEX® considers the interaction between the inner and outer pipes as well.

Soil Modeling for Underground Piping Systems
- Soil friction and soil springs with multiple stiffnesses versus deflection.
- Automatic generation of soil restraint model for buried pipelines according to B31.1, App. VII and User specified soil springs.
- Create and edit soil loading on one or multiple piping components at will. Soil modeling is fully integrated in TRIFLEX®.

Other Input & Modeling Capabilities Include:
- Reducer Component automates the entry of Reducer geometry, even if the reducer is skewed.
- Cold spring (cut short and cut long) can be entered directly
- Bend Flexibility Factors and Stress Intensification Factors (SIF’s) automatically calculated
- Branch Intersection Stress Intensification Factor (SIF’s) automatically calculated

Piping Codes Included in TRIFLEX®

- B31.1 ASME Power Piping Code with Material Database
- B31.3 ASME Process Piping Code with Material Database
- B31.4 ASME Pipeline Transportation Systems for Liquid Hydrocarbons and Other Liquid Codes
- B31.5 ASME Refrigeration Piping and Heat Transfer Component Code with Material Database
- B31.8 ASME Gas Transmission & Distribution Systems Code (DOT Guidelines) (Onshore & Offshore) with Material Database

NAVY - US Navy - Gen. Specifications for Ships, Sect 505

- CLAS2 - ASME Section III - Division 1 (Subsection NC) - Class 2
- CLAS3 - ASME Section III - Division 1 (Subsection ND) - Class 3
- SPC1 - Swedish Piping Code (Method 1, Section 9.4)
- SPC2 - Swedish Piping Code (Method 2, Section 9.5)
- TBK5-6 - Norwegian General Rules for Piping Systems (Section 10.5)
- DNV (Det norske Veritas) - DnV for Submarine Pipeline Systems, 1981 and 1996
- OS-F101 - Rules for Submarine Pipeline Systems, 2000 (Alternative)

Static Analysis Capabilities

TRIFLEX® provides the user with the ability to fully describe in words the piping model for documentation purposes. Further TRIFLEX® provides the user with the ability to create an integrated Word document that is automatically saved with the TRIFLEX® DTA file. TRIFLEX® provides defaults for all basic options, but the user can selectively override any or all of them. TRIFLEX® provides, as a default, the recommended load cases necessary for a sequence of analyses to be performed by TRIFLEX® that will result in a piping code compliance report indicating whether the stress level in a piping system is within the selected piping code requirements. TRIFLEX® also provides the user with the ability to perform algebraic combinations of displacements, forces and stresses which gives users the ability to generate virtually any loading combination desired. This load combination capability is the most flexible in piping stress analysis software available today. TRIFLEX® provides unlimited load cases and unlimited load case combination capability. TRIFLEX® enables the user to analyze models consisting of both piping and structural components. The interaction of the piping and structural components can easily be viewed and measured. The deflected shape of the piping system is easily displayed graphically and the piping model with the deflected shape can be panned, rotated and zoomed at will. Single acting restraints are and always have been handled in code compliance calculations as recommended in the piping codes. The extensive load case combination capability enables users to control the static analysis process more selectively than any other software on the market today.

Static analysis capabilities in TRIFLEX® include:

- **Extensive Spring Hanger Selection Capabilities**
 When a desired manufacturer of spring hangers is selected by the user, TRIFLEX® automatically processes the necessary analyses to determine the operating load and the installed position to operating position travel. TRIFLEX® then determines the spring hanger size and series required and gives the user two options to select from, if available. TRIFLEX® provides the user with the ability to easily display the deflections for multiple selected load cases for each spring hanger.

Equipment Loading Compliance Report

TRIFLEX® provides users the ability to model the piping and the equipment in one analysis and to have TRIFLEX® automatically generate nozzle and casing loading compliance reports for the following standards:

- NEMA SM23/24 for Steam Turbines
- API Std. 617 for Centrifugal Compressors
- API Std. 610 for Centrifugal pumps
- ROT User Customized Reports with vendor allowable loads

Piping Code Definitions

- **DOT Guidelines** (Onshore & Offshore)
 - B31.1 ASME Power Piping Code
 - B31.3 ASME Process Piping Code
 - B31.4 ASME Pipeline Transportation Systems for Liquid Hydrocarbons and Other Liquid Codes
 - B31.5 ASME Refrigeration Piping and Heat Transfer Component Code
 - B31.8 ASME Gas Transmission & Distribution Systems Code

- **Materials**
 - Code TI
 - Code 2
 - Code 3

- **System Design Specifications**
 - F101 - Submarine Pipe and Risers, 1984 Norwegian Petroleum Directorate
 - STOL - Design Specifications, Offshore Installations F-sd-101 Statoil
 - POL1 - Polska Norma PN-79/M34033 Steam & Water Piping
 - SNIP - 2.05-06-85 FSU Transmission Piping Code
 - BST7159 - British Standard Code for Glass Reinforced Plastic Piping
 - BS8010 - British Standard Piping Code
 - UKOAA - UK Offshore Operator Association
 - EURO - European Standard EN 13480-3 with Material Database
 - CODETI - French Piping Code
Nozzle Flexibilities and Stresses
TRIFLEX® provides users the ability to calculate nozzle flexibilities in accordance with the Welding Research Council (WRC) Bulletin 297 as well as entering flexibilities computed based on any other guideline. WERCO®, the companion program to TRIFLEX®, can easily be used to compute stresses in nozzle shells and the intersection point. WERCO® computes stresses based upon the rules set forth in the WRC 107 and WRC 297 Bulletins.

Flange Leakage Calculations
TRIFLEX® provides users the ability to perform leakage calculations for any selected point in a piping system. The leakage calculations are based upon the ANSI B16.5 ratings and an equation from the ASME Section III Code that converts piping loads and internal pressures into equivalent pressures which are then compared to the flange allowable pressures in accordance with the ANSI B16.5 Standard.

Fatigue Analysis and Cumulative Usage Report
TRIFLEX® provides users the ability to calculate the remaining life in a piping system based on material fatigue curve data from the ASME Section VIII, Division 1 Code and number of cycles entered by the user. The cumulative usage report provides a total usage factor taking into consideration all fatigue cases defined by the user.

Offshore Piping Analysis
Based upon the entered density of the surrounding seawater, TRIFLEX® automatically calculates the external hydrostatic pressure applied on the pipe. Wave loads can easily be added.

Wind Load Generation
TRIFLEX® provides the user with the ability to define wind loads as a function of wind speed, pressure or load per unit length of the pipe. Projected surfaces are automatically computed and reduced loads are therefore automatically calculated.

Dynamic Analysis Capabilities
TRIFLEX® provides users the ability to perform detailed dynamic analyses and to consider the results of the dynamic analyses as the occasional stresses in a piping code compliance analysis. The dynamic analysis capabilities offered by TRIFLEX® are Response Spectrum Analysis and Time History Analysis. Prior to performing a dynamic analysis, TRIFLEX® generates mode shapes and natural frequencies for a piping system. Then the user may conduct a Response Spectrum Analysis or a Time History Analysis depending upon the loadings to be applied.

TRIFLEX® provides the ability to view each mode shape graphically. Knowing the natural frequencies of the connected equipment and the piping system, a user can easily avoid most inherent piping vibration problems.

Response Spectrum Analysis
TRIFLEX® provides users with two standard industry-accepted methods to generate a response spectra or the user may construct a custom spectra for use in an analysis. With TRIFLEX®, a user can enter as many as three spectra to be applied to a piping system in one analysis. The results of such a spectral analysis can be stored in a load case and considered as occasional loads and the resulting stresses in a code compliance analysis. TRIFLEX® provides the ability to store, recall and edit specific spectral definitions as well as the ability to view each spectrum graphically.

Time History Analysis
TRIFLEX® provides users the ability to simulate the application of loadings on a piping system as a function of time and to view the resulting reaction of the piping system as a function of time. Employing the Time History method, TRIFLEX® provides users the ability to perform equipment imbalance studies, water hammer studies, steam hammer studies, relief valve release studies, transient flow studies as well as other time dependent studies. For non-branching piping systems subject to water hammer loading, TRIFLEX® calculates the forcing functions at significant piping system nodes along with the time of arrival at each node. This allows the user of TRIFLEX® to accurately simulate a water hammer event without requiring the use of any other software. Where more complex piping systems are being simulated for the effects of water hammer, time dependent load data can be generated using another program such as Pipenet Transient and the data can be imported directly by TRIFLEX® or the data can easily be entered manually using the user friendly data entry dialogs.

The effect of the time variant function on the displacement of the system may then be displayed graphically in an animation sequence. The imposed loading has an effect on the piping system displacements, forces, moments and stresses, which may be viewed on a spreadsheet at each time increment or in tabular form for all time increments for each point in the piping system. The maximum of these system effects can be added onto the occasional loading for one or more case definitions and specified as the occasional load for a piping code compliance report.
Animation of Time History Analysis Results
TRIFLEX® provides users the ability to generate mode shapes and natural frequencies for a piping system and display them graphically. TRIFLEX® also enables users to generate time dependent animations of a piping system showing the displacement as a function of time. This feature enables users to better understand the effects of the dynamic loadings on the piping system.

Load Case Combination for Static and Dynamic Cases
TRIFLEX® provides users the ability to define any load case or combination of load cases as the primary, secondary or occasional component of a new load case. TRIFLEX® also enables users to combine any of these load cases using a variety of methods available in TRIFLEX®.

Output Capabilities
TRIFLEX® provides users with the most complete and flexible Output Reporting capabilities in the market. TRIFLEX® generates reports in spread sheet format that can be printed individually or in groups as desired by the user. The reports available include: Piping System Properties — various reports, Center of Gravity, Deflections, Rotations, Forces and Moments for entire Piping System, Local, Anchors, Restraints and Expansion Joints, as well as System Stresses and Maximum System Values. Essentially all of the same reports are available in an ASCII format with similar report selection capability for multiple report printing. Structural stresses are also reported in detail.

Additional reports available are: Piping Code Compliance Report, Spring Hanger Report, Rotating Equipment Reports and Flange Loading Report. The Piping Code Compliance Reports show all applicable data entered as well as the calculated values and the allowables taken from the applicable piping code based upon the temperature of the piping system in the analysis. Percentages are shown for all stresses computed when compared with the allowables taken from the piping code. When over stress conditions are found, these areas of the piping system are highlighted in the piping code compliance report.

Output reports can also be generated for selected portions of a piping system rather than the entire piping system and can be sorted by load case rather than by data point. The reports that may be viewed by load case include Anchor Movements and Forces, Restraint Movements and Forces, and Global Movements and Forces. These reports may include or exclude sub cases, and, when a time history case is available, they can give a detailed listing of all available items versus time. This capability is specifically used by pipe support engineers to document deflections, forces and moments at specific pipe support locations.

Case 6:
(Secondary) = [Case 1.1, Therm Effect]
(Primary) = [Case 1.2, Press + WT]
(Occasional) = [Case 4.3, Wind Loads] + [Case 5.3, 0.20 Weight in X]
Case 7:
(Secondary) = [Case 1.1, Therm Effect]
(Primary) = [Case 1.2, Press + WT]
(Occasional) = [Case 5.4, Occ] + [Case 6.3, Occ] + [Case 4.5 = 0.30 Weight in Y]
Case 8:
(Secondary) = [Case 1.1, Therm Effect]
(Primary) = [Case 1.2, Press + WT]
(Occasional) = [Case 7.3, Occ] + [Case 5.5 = 0.40 Weight in Z]
Case 9:
(Secondary) = [Case 1.1, Therm Effect]
(Primary) = [Case 1.2, Press + WT]
(Occasional) = [Case 4.3, Wind] + SRSS

All output reports related to deflections, rotations, forces, moments and piping code stresses can be displayed graphically with color indicating the magnitude of the selected value and a color scale indicating magnitude versus color. Actual deflected shapes can be shown for a piping system and the X, Y and Z components of the deflected shapes can individually be shown, if desired. While any of these graphical representations are displayed, TRIFLEX® enables the user to rotate, pan and zoom the graphics displayed.

TRIFLEX® can export most tabular output reports to a Microsoft Excel spreadsheet with each report being written to a worksheet with the tab labeled to reflect the report on the worksheet.
Data Import Capabilities
TRIFLEX® provides Users the ability to import data from a number of different programs used for constructing computer-based piping system models. The time required to construct TRIFLEX® piping models will be dramatically reduced when geometry, piping properties, process data and various loading data is imported from previously constructed CAD models.
TRIFLEX® imports data from the following 3-D CAD programs:
• PDMS by AVEVA
• PLANT 3D and Inventor by AutoDesk
• PDS and SmartPlant by Intergraph
• CATIA and SolidWorks by Dassault Systemes
• CadPipe by AEC Design Group
• AutoPlant by Bentley Systems
• PLANT 4D by CEA Systems
• Dimension III by Calma
TRIFLEX® imports model data from Caesar II piping stress analysis program marketed by Coade/Intergraph.
TRIFLEX® imports model geometry data from Excel files. This is specifically handy if geometric data is obtained via GPS devices or other devices that can generate spatial coordinates.

Data Export Capabilities
TRIFLEX® can export to tab-delimited TXT files. This allows database applications such as Access or ORACLE to import the results directly from TRIFLEX® into their proprietary format (column header names are also exported).
TRIFLEX® can export most tabular (spreadsheet-based) output reports to Microsoft Excel spreadsheet with each report being written to a separate worksheet with the tab labeled to reflect the report on the worksheet.
TRIFLEX® can export to the popular PCF file format for interfacing with a number of CAD, piping and Plant Design programs.
Graphics can be exported to high-quality image files in the JPEG, BMP and PS (PostScript) format. The resolution can be set dynamically by the user for spectacular quality.
TRIFLEX® provides users the ability to export a Stress Isometric Drawings in AutoCAD 3-D DXF files. The exported DXF files may include data on layers such as node numbers, dimensions and selected output reports from Load Cases processed.

Hardware/Software Requirements:
• 32 & 64 bit, single or multi-core, Intel or AMD processor
• Microsoft Windows (2000, XP, Vista or Windows7) OS
• Microsoft Word, Excel and Access (recommended to be able to use all capabilities of TRIFLEX®)
• 2 Gigabytes RAM (min.) (4 Gigabytes RAM recommended)
• 185 Mbytes of disk space
• CD ROM Drive or Internet connection to download TRIFLEX®

New 2-Way Piping Stress Analysis Link
PDMS to and from TRIFLEX®
The newly developed PDMS to TRIFLEX® Link transfers data from the PDMS database to TRIFLEX® via the AVEVA Pipe Stress Interface. Additional data can then be entered in TRIFLEX® and multiple analyses can be processed. The data transfer process from PDMS to TRIFLEX® via the AVEVA Pipe Stress Interface insures that the piping system geometry created in the PDMS piping model is accurately transferred to TRIFLEX®.

Save 100’s of modeling hours each year with the new LINK!
Further benefits that will be enjoyed by the users of the newly developed PDMS to TRIFLEX® Link are as follows:
1. The temperature, pressure, pipe contents properties, pipe insulation specifications and pipe support specifications can be defined in PDMS and transferred into TRIFLEX® for use in the analysis.
2. Piping materials specifications can be entered in PDMS and passed to TRIFLEX® via the AVEVA Pipe Stress Interface where allowable stresses are invoked for any one of the numerous, world recognized piping codes included in TRIFLEX®.
3. Flange and valve type, weight and length properties are entered in PDMS and passed to TRIFLEX® via the AVEVA Pipe Stress Interface for inclusion in the piping stress analysis. TRIFLEX® automatically calculates added weight of the insulation on the flange and/or valve using industry std. guidelines.
4. Branch connection data is entered in PDMS and transferred into TRIFLEX® for inclusion in the piping stress analysis. TRIFLEX® calculates the appropriate stress intensification factors based upon the piping code selected by the user.
5. Elbows, pipe bends and mitered bends can be entered in PDMS and transferred into TRIFLEX®. TRIFLEX® calculates the appropriate bend flexibility factors and stress intensification factors based upon the piping code selected by the user.
6. Concentric and eccentric reducers can be entered in PDMS and transferred into TRIFLEX® where the appropriate stress intensification factors are calculated based upon the piping code selected by the user.
Improve accuracy of your piping stress analysis models & reduce the time it takes to produce the model. Use the New 2-Way Piping Stress Analysis Link PDMS to and from TRIFLEX® Windows

1. Construct Piping Model in PDMS
2. Pass data from PDMS to TRIFLEX®
3. Edit data and modify routing, if necessary, in TRIFLEX® and process analyses – verify deflections, loads and stresses
4. Generate TRIFLEX® analysis output reports
5. Pass modified data back to PDMS
6. Generate deflected shape of piping system in PDMS

Select the best — Start Saving Time Now!